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Abstract 

The overall goal of this project is to develop a new and efficient boundary element 
method (BEM) program for the stress analysis of 3-D anisotropic rock masses that are perturbed 
by irregular topographies and underground openings. This stress analysis will provide direct 
information on the best (or optimal) selection of the surface location and hit angle for a 
penetrator. We have identified three tasks to achieve this goal, which include theoretical and 
analytical development; computational and numerical development; and laboratory investigation 
and field validation. This final technical report presents our accomplishments related to the first 
and second tasks, that is, the theoretical and analytical development, and computational and 
numerical development. 

First, the analytical solution and numerical implementation are presented for elastostatic 
displacement Green's function for 3D rock masses of general anisotropy. Excerpts from the 
authors' FORTRAN code are included. A numerical algorithm for the calculation of the 
derivatives of the Green's displacements and stresses is also introduced. Secondly, these Green's 
functions are incorporated into a BEM code developed by the authors. Thirdly, numerical results 
of Green's displacements, stresses and stress derivatives are presented and compared to the 
closed-form solutions for transversely isotropic rocks. Finally, the BEM code based on the 
current Green's functions is tested and the numerical results are compared to those using a BEM 
code based on the exact Green's functions. It is shown that the Green's functions derived in this 
report are accurate and the corresponding BEM code is correct. This BEM code is now ready for 
the laboratory comparison and field validation. 
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1. Introduction 
Green's functions are important in the formulation of boundary integral equations and in 

the solution of those equations by the boundary element method (BEM) [1,2]. In order to handle 
rock and rock mass anisotropy, the static Green's functions in a 3-D anisotropic full-space are 
required. Previously, several methods were proposed to calculate these Green's functions. These 
include the numerical integral method, series expansion technique, dual reciprocity technique, 
and the eigenvalue/eigenfunction method. While the first three methods are approximate, the last 
one requires solving a 6x6 eigenvalue system.     * 

After reviewing thoroughly this topic, Wang [3] derived explicit expressions for 3D 
elastostatic Green's displacements in general anisotropic solids and integrals of Green's 
displacement derivatives over segments and rectangles. 

At the outset, this report reviews some of the basic concepts inherent in Wang's 
formulation for Green's displacements. A particularized account of the authors' derivation and 
implementation of these expressions follows, along with the key parts of the authors' own code 
written in FORTRAN. 

Secondly, a numerical algorithm for the calculation of the derivatives of the Green's 
displacements and stresses is subsequently introduced; it allows the discretization of the 
boundary to be of the most general type in a BEM formulation. 

Thirdly, it is described how the preceding implementations were utilized within a BEM 
code. 

Finally, numerical examples of Green's displacements, stresses and stress derivatives are 
presented for a transversely isotropic solid, so as to allow a comparison with a previously 
available closed-form solution [4]. Numerical examples of BEM calculations are also given and 
the results are compared with exact solutions and previously published numerical results. 



2. Outline of the analytical solution 

2.1 Notation 

Consider the geometry of Figure la where (O, xh x2, x3) is a Cartesian coordinate system 
in a 3-dimensional Euclidean space R3, (ui, u2, u3) the corresponding right-handed orthonormal 
basis and x=(xi, x2,xi) a point in this space. We assume that the anisotropic body is embedded in 
this space. 

Let n=(«i, n2, m) be a vector whose components in R3 are n\, n2, m, with respect to ui, 112, 
u3, respectively. We can imagine n=(«i, n2, «3) also as a point in a Cartesian coordinate system of 
a 3-dimensional Euclidean space, which will be called the n-space. Let Q be any closed surface 
containing the origin of the n-space and dQ(n) an infinitesimal area element of this surface 
around point n=(«i, n2, «3), see Figure 1 .b. 

Throughout this paper, "•" indicates the dot product of two vectors and "x" indicates the 
cross product. Also, a comma indicates partial differentiation with respect to a variable, i.e. 

fir— and summation over repeated indices is assumed. 
dx, 

2.2 Basic equations 

Consider an unbounded homogeneous anisotropic linearly elastic solid subjected to a 
point load in the fixed coordinate system (O, xu x2, x3) depicted in Figure La. The Green's 
function will be denoted by gPk(x) and gives the displacement in the xp-direction at x produced by 
a point load applied at the origin O in the xk-direction. Let atJ be the stress tensor, u\ the 

displacement field and 

fi« = 2(BM+"J (la> 

the infinitesimal strain. 
The constitutive relation of linear elasticity reads: 

<TV=cmepg (lb) 

where cypq is the elastic tensor, which is fully symmetric and positive definite, i.e.: 

CiJPq=Cßpq=CiJqp~Cpqij 0C) 

c, ijpqavapq>0 V non-zero tensor ay (Id) 

Inserting the kinematics relation (la) into the constitutive relation (lb) and the latter into 
the equilibrium equation: 

aVJ + Fi =° (2a) 

where F\ is the body force per unit volume, we obtain the following three second-order partial 
differential equations: 



once the symmetry (lc) of the elastic tensor is taken into account. Because the Green's function 
is relative to a point force, (2b) becomes: 

Cypqgpk./q(*) = SikS(x) (3) 

where 8;k is the Kronecker delta and 8(x) the Dirac delta. 

In the subsequent implementation, the 6x6 matrix D of Voigt constants is introduced such 
that: 

cTk = D £k (4) 

where CT k=(CTnk> CT22k, cr33k, C723k, <*i3k> ai2k)T is the Green's stress vector (relative to a point force 
applied in direction k at the origin) and Sk=(Eiik, 822k, £33k, 2823k, 2ei3k, 2si2k)T is the Green's 
strain vector (relative to a point force applied in direction k at the origin) with its components 
being defined as : 

eVk=j(lS.tkj + gjk,i) (5) 

The following rules apply between the components cyks and Z)ap and account for the first 
two symmetries of formula (lc) [5]: 

Ifi=j,a=i; (6) 

Ifi*j,a=9-i-j; (7) 

Jf k=s,$=k; (8) 

If k#s, $=9-k-s; (9) 

The third symmetry of formula (lc) is accomplished by the symmetry of D, therefore: 

Ifa<ß,cijks = Axß; (10) 

Ifa>ß,Cijks = I»pa; (11) 

2.3 Analytic solution 
We notice that Cijpq«j«q is symmetric and positive definite, so that it's inverse is well 

defined. We set: 

Tip(p)=cijpqnjnq ;     rr1(n) = (c^nyn?)"1 (12) 

Consider now the following identities, in which integration is taken in the n-space over 
any closed surface Q including the origin (see Figure lb) and use is made of Eqs. (A.6b) and 
(A.8) (see Appendix A): 



irps dxrdxs a n 

f / w </2<?(y)        ,_ / x    _   frf2£(y) 
= ^ApA»,lS^"r«5 j    —£T- dCl{n) = Sik J-^P 

cfQ(n) = 
=n-x 

</Q(n) = (13) 

Since the last member in (13) can be wrijyten in terms of the plane representation of the 
delta function (A. 10), we have: 

irps dxrdxs 
Jr^(n)y(n • x>ö(n) = -&r2^(x) (14) 
n 

By comparing (3) with (14), we get the following integral expression for the Green's 
displacement function: 

n 
(15) 

We now try to write (15) in a form suitable for integration by means of the Theory of 
Residues [6]. To this end, we express the inverse tensor r~J(n) as: 

Apk(*) r»= (16) 

where Apk(n) is the adjoint matrix of cypqWj«q and £>(n) is the determinant of Cijpqrcjrtq, e.g.: 

Apk{n) = adj[cijpqnjnq\; D{VL) = det[c^nyn J (17) 

It is convenient to use coordinates (£, £, r\) introduced in Appendix B. Using Eq. (B.4), 
equation (15) becomes: 

s^ft^ä*^^ (18) 

where r is the distance between the field and source points (see equation (B.l.a)). 
Since Tpk(n) is a 3x3 matrix, each entry of its adjoint matrix Ap^ is a polynomial of order 

4 in %, C, and r\. Similarly, determinant D(n) is a polynomial of order 6 in \, C, and TJ. 

Following Wang [3], we choose Q as a rectangular parallelepiped having size 2Lx2Lx2 
(Fig. 2) and let the dimension L go to infinity. Since over surfaces other than Si and S2 the 
integrand in (18) approaches zero as 1/L2, the contribution of the integration over every surface 
but Si and S2 vanishes. Moreover, the integrand in (18) is symmetric with respect to £, since only 
even powers of £, are involved. This leads to twice the integration over Si (4=1): 



5,      ^ (19) 

An2 J-ooL D(p + <q + 77e)   V /A^ 

We recall that [6], for any infinitely differentiable function fix) and any positive real 
number a: 

00 00 

\ö(ax)f{x)ax = - \ö{x)f(x/a)dx = -f{0) (20) 
-00 -oo 

which is justified by the change of variables ax-»*. Therefore, integrating (19) with respect to r\ 
yields: 

The integral in (21) can be handled by means of the Theory of the Residues [6]. The poles 
are the roots of the polynomial equation of sixth order in C,: 

£>(p + £q) = 0 (22) 

If n*0 is real, Tpk(n) is a real symmetric, positive definite matrix and then its eigenvalues 

are all real and positive [6], thus its determinant can never be zero. If we want Eq. (22) to be 
satisfied, C, must therefore be complex. A corollary of the Fundamental Theorem of Algebra [7] 
tells us that a real polynomial of order NhasN roots and that if C^a+ib is a root, its conjugate 
C,*=a-ib must also be a root [7]. In our case we have 3 roots C,m satisfying : 

Z)(p + Ol)=0 .(23) 

with: 

lm£„>0 m=l,2,3 (24) 

and we may write: 

D(p + ^q)=^a,+1^=a7J
2I(^-^X^-^*) (25) 

k=0 m=l 

where ak are the coefficients of the sextic polynomial Z)(p + £q) with respect to £,. Equation (23) 
is called the sextic equation of elasticity and it has been shown that no closed-form solution 
exists for its roots [8]. Thus this equation must be solved numerically. Integral (21) can now be 
expressed in terms of the residues at the poles, taking into account that it must be real: 

/ x       Im ^ A k(p + Cmq)  „_ 
Sptä=-^:2u 3  (27) 

"-1 a7{Cm -Cm *0^ -6fc« -C* *) 
*=i 
k*m 



It is the authors' experience that the 6 poles resulted simple even with isotropic materials. 
Should the poles be multiple, a slight change in the elastic constants will result in single poles, 
with negligible errors in the computed Green's tensor. 

Some features of formula (27) need to be pointed out: 
1) since Tpk(n) is symmetric, its adjoint matrix Ap^ is also symmetric and so is Green's tensor 

gPk. As a consequence, only 6 terms out of 9 must be calculated; 
2) for two points xj and X2 aligned along the same line passing through the origin, the summation 

over index m has the same value; 
3) as a consequence of 2), gPk approaches zero as Mr when r-»oo; 
4) as a consequerice of 2), gPk depends only on the relative position of the source point and field 

point. Thus the implementation can proceed considering the source point always at the origin, 
by an applicable translation; this leads to an important simplification of the implementation 
itself; 

5) the numerical solution of a polynomial of sixth order is the only numerical step required in 
order to obtain the entire Green's function. 

3. Implementation of the analytic solution 
The key steps in the implementation of the analytic formulation fall essentially into two 

groups: 
1) entries of TiJ(p + £q) in terms of stiffness matrix components Dap, coordinates of field point x, 

and variable C,; 
2) coefficients a\ z-l,...,7 of sextic polynomial (25). 

In order to keep the expressions as simple as possible, vector v introduced in Appendix B 
must coincide with one of the base vectors m, U2,113. In the following, we have assumed that v is 
either (1,0,0) or (0,1,0); the choice between them must be done on the basis of x and affects step 
1) only. 

3.1 Entries of matrix Ty (p + £q) 

Each entry of matrix TiJ(p + £q) is a polynomial of order two in t, of the form: 

rv(p+ft)=*v,+M'+V2 (28) 
As an example, coefficients b^ are given in Appendix C in FORTRAN format for the 

case v=(l,0,0); they take into account Eqs. (6)-(ll) so that they are functions of the entries of 
matrix D, which are much more manageable then the fourth-order tensor CyPq. Coefficients b^ 
are also functions of the field point coordinates. The correspondence between notation used in 
the text and notation used in the Fortran code is established in Table 1. Mathematica 2.2 was 
used to get the expression of coefficients b^. 

3.2 Coefficients of the sextic polynomial 
Although it is possible to get the expressions of coefficients ax (z-l,...,7) directly in terms 

of the stiffness matrix components Da$ and of the field point coordinates, this leads to 
expressions as long as 40 pages, which cannot be handled easily by the compiler and are not 
computationally efficient. Thus the idea is to derive them in terms of the 6ijk coefficients 
introduced in (28). Determinant £>(p + £q) can in fact be written as the sum of trinomials: 



z)(p+^q)=-r13r22r31+2r12r23r31 -rnr23r32 -r12r21r33+rnr22r33 (29) 

If we put (28) into (29), we realize that each coefficient a\ (relative to i^'"1) is a sum of trinomials 
of % coefficients. Let /, m, n be the last indexes of the coefficients of a trinomial, we found that 
these indexes have to satisfy / + m + n=i-2 in order for the product to be of order i-1. For 
example, only coefficients % such that k=\ contribute to a\. Thus, in general: 

fl/=~ 2jbl3ib22jb31k+2 /Jh2ib2ijbm ~ /   bUib2yb32k ~ 
l,m,n:l+m+n=i-2 I,m,n:l+m+n=i-2 l,m,n:l+m+n=i-2 fi(\\ 

2^b\1ib2\jh3k + 2^X1^22 jhik^, 
l,m,n:l+m+n=i-2 l,m,n:l+m+n=i-2 

Coefficients at calculated according to (30) are given in Appendix D in Fortran format 
(see Table 1 for notation correspondence). It is to be noted that the present implementation of the 
analytic solution is quite simple, when compared to the complexity of the problem in hand. 

4. Derivatives of the Green's displacements and stresses 
Analytic solutions for the integral over segments and rectangles of the Green's 

displacement derivatives were proposed by Wang [3]. However, expressions of the derivatives of 
the Green's displacements are necessary if the boundary discretization must be more general. 
Several attempts were made by the authors in order to get a closed form solution of the Green's 
function derivatives. The most promising of them started from the derivation of (21) and led to 
the expression: 

, \     xs  T   x^ Apk(p + CnA)  

--1 a7{(m -Cm *j[\(£m Skfcm -Ct *) 
*=i 
k*m 

-J-Im£ j** + (31) 

=> a7(C -Cm "OC -&XC -Ct *) m=l 

k=\ 
k*m 

+_Ltaf lim ± 
2nr     *ri<;-*Cm d^ ^   imrD2dxr 

In this equation, the last term is very complicated, therefore, a numerical algorithm was 
implemented based on the Lagrange polynomials [9]. Despite of its simplicity, this approach has 
been proven to be efficient, accurate, and robust. 

Following [9], let a function fix) be known at the n points JCI< X2<...< xn. Let us call 
ynf&i) i=\,—,n and set: 

n n n 

F(x) = \\{x-xk);   Fk{x) = y[{x-xr);    Fk{xk) = J^fo -xr) (32) 
*=1 r=l r=l 

r±k r*k 



The complete Lagrange interpolation function is : 

f(x) = p(x)+F(x).f^W (33) 

where : 

By taking the derivative of (33) and evaluating it in xr, we get: 

rfc)=Ffe)+F'fe).Äi» (35) 
n\ 

Thus, the error in the first derivative is : 

FW./!Ä» (36) 

F'(xr) is nothing but the product of the distances between xT and the other chosen abscissas. 
Therefore, if the intervals between the chosen abscissas is constant, its minimum value is attained 
at the mid point (or two mid-points if« is even) of the segment between x\ and xn. It follows that 
the best approximation of the value of f'{xr) obtainable using the polynomial derivative is 
attained at the mid point (or two mid points if« is even) of the segment between x\ and xn. 
It can be shown that the derivative of the Lagrange polynomial is [9]: 

rk'i-t.-r- 
jt=l "r 

k*r 

F(xr) 
(37) 

If we choose a polynomial of order 2, i.e. 3 abscissas, from (35) and (37) we get: 
•2 

/'fe) = ^-[-/W+/fe)]-y/<3,(&) (38) 

where h is the distance between two consecutive abscissas and £2 is a point comprised between x\ 
and X3. 

Now, let x be the field point at which we want to calculate the Green's stress component 
o-jjk defined in Section 2.2. To this end, the expression of the Green's strain component Syk at x is 
necessary in order to calculate cryk by means of (4). Using (38), the following expressions of the 
Green's strain component syk at x are obtained: 

F  fYy.gi*(x+Ai)-gi*(x-Ai) „Qs £\ \k W T7  (39) 

(J\„ g2*(* + A2)-g2jt(x-A2) 
hiAV*—  2h       (40) 

£
Mc 

(x) --- 8U (X + A3 ) ~ S3k (X ~ A3 ) ( 



e    (x)-■ &*(x + A2)-gu(x~ A2)+ g2t(* + A3)-g2k(x- A3) (42) 

2h 

%*(*)* V/ V        "3/ '  *3*V~ ■  "1/     *3*V~     "1/ (43) 

£l2k 
fx\rj gu(x + A2)-gu(x-A2)+g2^(x + A1)-g2fc(x-A1) 

where Ai=(Ä50,0), A2=(0, //, 0), A3=(0,0, h). 
In order to"get the complete Green's stress and strain at point x, it is thus necessary to 

compute the Green's tensor at 6 points in the neighborhood of x. The choice of interval A is a 
crucial decision. An extensive numerical investigation has led us to the conclusion that the best 
value of the interval is: 

h = r -lO-6 (45) 

where r is the distance between the field and source points. 
It is also noteworthy that the attempts aimed at increasing the accuracy of the 

approximation by adding other terms to (39)-(44) led to no appreciable improvement. In the 
authors' opinion, the reason for the good performance of this scheme lies primarily in the smooth 
and monotonic behavior of the Green's displacements. 

In order to calculate internal stresses, the derivatives of the Green's stresses and 
displacements are needed with respect to the coordinates of the source point (see Section 5). By 
virtue of Observation 4 in Section 2, these derivatives are equal but opposite in sign to the 
derivatives taken with respect to the field point x\. According to (38), the derivatives of the 
Green's stresses are approximated as: 

and the derivatives of the Green's displacements as: 

2h -^ (46a) 

^)>^'       MA gyA*h— ^^        >=1,2,3 (46b) 

5. BEM formulation 
Consider an elastic body (finite or infinite) with the following displacement and traction 

conditions imposed on the boundary r=ru+r: 

Uj(x)=üj(x)        xeTu (47a) 

^(xHW=^(x)        xert (47b) 

with «j being the external normal to Tt. 
For each internal point xp the following integral equation holds [10]: 

10 



U
I(*P)+ J^(vxK(xMx) = fzfv(xp,x)Tj(x)cir(x) (48) 

r r 

where U*\xp,x) and ^(x^x) are the Green's displacements and tractions, respectively. By 

virtue of Observation 4 in Section 2, U*j(xp,x) and T*{xp,x) are equal to: 

U*j(xp,x)=giJ(x-xp) (49) 

rtf(vx)=S#(x-x/»kM A (50) 
If xp approaches a point xb on the boundary, (48) is modified as: 

«Wx*)+ J^(xi,x)W/x>r(x)= ju;(xb,x)Tj(x)dr^) (51) 
r r 

where d^ are coefficients that depend only on the local geometry of the boundary at xt,. 
The term on the right-hand side of (51) has weak singularity (see Observation 3, Section 

2) and can thus be integrated by means of a usual Gauss quadrature technique. The rigid-body 
motion method [11] can be used to overcome the Cauchy-type singularity in the first integrand 
and at the same time to avoid the calculation of coefficients d^. 

Equation (51) can be discretized and, once boundary conditions (47) are taken into 
account, the resulting algebraic system of equations can be solved for the unknown boundary 
displacements and tractions. Then Eq. (48) can be used to calculate internal displacements. 

In order to get the internal stresses, it is necessary to take the derivative of (48) with 
respect to the internal coordinates xp. This yields: 

»tfW+ J^s/(
xP'x)"y(xKW= {^,(xrx)?;.(xWx) (52) 

r r 

where: 

T
0,I(

X
P>

X
)= -<%/(x - xpK(x) (53a) 

Uh(xP>x)=-gvAx-xp) (53b) 

with °%,/(x - XP) given by (46a)and SijAx - XP) 
by (46b>- 

Once uti\xp) are obtained, the internal stresses are calculated by means of the following 
equation similar to (4) and (5): 

<* = D e (54a) 
where: 

C =(CJU, O22, CT33, CT23, CT13, On)1 (54b) 

£=(ei 1, £22, S33, 2s23, 2ei3, 2ei2)T (54c) 

eV=j(uU + uj.i) (54d) 

11 



The implementation described in Sections 3 and 4 was incorporated into an existing 3D 
BEM code (see [11] for its description) according to the procedure presented in this Section. 

6. Numerical examples 

6.1  Green's displacements, stresses and derivatives of the stresses 
Let us consider a transversely isotropic and linearly elastic solid, whose plane of 

transverse isotropy is parallel to the x&2 plane. A closed-form solution exists in this case [4] for 
the Green's displacements, stresses and derivatives of the stresses. This solution will be used (as 
implemented in [11]) to validate the proposed formulation. 

The material properties are as follows: E=20-104 kN/m2, £'=4-104 kN/m2, v=0.25, 
v'=0.25, G -1.6-104 kN/m2, where E and E' are the Young's modulus in the plane of transverse 
isotropy and in the direction normal to it, respectively; v and v' are the Poisson's ratios 
characterizing the lateral strain response in the plane of transverse isotropy to a stress acting 
parallel and normal to it, respectively; G' is the shear modulus in planes normal to the plane of 
symmetry. The corresponding stiffness matrix D is (only the upper half is given): 

f88     72     40    0     0    0") 
88     40    0     00 

24    0     0    0 
16    0    0 

sym. 16   0 
8 

-»4 1,"K.T/™2 104kN/m/ (55) 

The field point is placed at x=(-1,0.8,1.5) m. The displacements, stresses, stress 
derivatives are collected in Tables 2, 3 and 4, respectively. The agreement between the closed- 
form solution and the present formulation is very good for all three quantities. Only for some 
components of the derivatives of the stresses (Table 4) is the relative difference not negligible; 
however, it must be noted that the magnitude of these components is small with respect to the 
remaining components, thus leading to negligible errors in the computation of the internal 
stresses, as will be shown in Section 6.2. 

6.2 BEM models 
The geometry of the following two examples is the same. A cube of transversely isotropic 

material, whose edge is lm long, is discretized very coarsely with 6 nine-node isoparametric 
elements and with a total of 26 nodes (see Figure 3). The faces of the block are parallel to the 
coordinate planes. The block is subjected to uniform compression of 1 kN/m2 on the two faces 
parallel to the x\X2 plane. For this case, an exact solution exists [12]. 

In the first example we adopt the same material constants as considered in Section 6.1. 
However, the plane of symmetry is no longer parallel to the x\X2 plane, but is inclined with dip 
orientation <p=60° and dip angle \j/ =45° (see Figure 4). Consequently, stiffness matrix D referred 
to x\, X2, X3 axes is now fully populated (only the upper half is given): 
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14.5 9.9     9.6 -0.2 -3.1177 -1.5588 

18.5    9.6 -2.2 -1.0392 -1.9052 

12.8 -1.6 -2.7713 0 

3.2 0 -1.0392 

yym. 3.2 -0.2 

3.5 

■104kN/m2 (56) 

This case was also considered in [11] where it was solved using the closed-form solution for the 
Green's displacements, stresses and stress derivatives by Pan and Chou [4]. The results obtained 
with these formulations and with the present one are given in Tables 5 and 6; they indicate that 
for both the displacements (on the boundary and internal) and internal stresses, the exact values 
and the values calculated in [11] are in very good agreement. 

The second example resembles the one reported in [13]. Here a (transversely isotropic) 
zinc cube is considered, whose plane of symmetry is parallel to the x&2 plane. The stiffness 
matrix referred to x\, xi, X3 axes is now (only the upper half is given): 

(161.00    34.20    50.10 0 0 0 

161.00   50.10 0 0 0 

61.00 0 0 0 

38.3 0 0 

i 

38.30 0 

63.40 

GPa (57) 

It is to be noted that zinc has a negative Poisson ratio vi2=-0.06. In Table 7 the results obtained 
by Schclar [13] with a different numerical formulation for general anisotropic bodies are given in 
the second column. Form a comparison between columns 1 and 3 and 2 and 3, it turns out that 
the present formulation and implementation is much more precise. 

7. Conclusions 
The implementation of an analytic solution for Green's displacements in general 

anisotropic solids is presented. Its detailed illustration has been accompanied with excerpts from 
the authors' own Fortran code, in order for the implementation to be available and readily usable 
by as many readers as possible. Many features distinguish the present implementation from the 
existing numerical formulations: 
1) the procedure is completely analytic, the only numerical step is represented by the 

determination of the roots of a sixth-order polynomial; 
2) once the roots of this polynomial are known, the entire Green's tensor is immediately 

calculated; 
3) the procedure is very robust, since no problem arose even with highly degenerate materials 

such as transversely isotropic or isotropic materials; 
4) the implementation is very efficient, since less than 16 sec were necessary to run 10,000 

calculations of the entire Green's tensor in a PC featuring a 266 Mhz Pentium II processor and 
64 MB RAM; 

5) an extensive numerical validation (one example of which was included in the paper) has 
shown its high accuracy. 

13 



A numerical algorithm has also been proposed for the Green's stresses and their 
derivatives. Despite its simplicity, it has been proven to be: 
1) robust, since no problem arose even with highly degenerate materials such as transversely 

isotropic or isotropic materials; 
2) very accurate even with degenerate materials and/or when the field point is very close to or 

very far from the source point; 
3) very efficient, since less than 80 sec were necessary to run 10.000 calculations of the complete 

Green's stresses in a PC featuring a 266 MHz Pentium II processor and 64 MB RAM. 
Finally, the performance of the proposed implementations within a previously developed 

3D BEM code [1JJ turned out to be highly accurate when compared to both exact solutions and 
transversely isotropic BEM formulations for which the closed-form expressions of the Green's 
displacements, stresses and stress derivatives were used. When compared to previously published 
results obtained with completely numerical formulations, the present implementation turned out 
to be much more precise. 

In conclusion, the anisotropic Green's functions and the corresponding 3D BEM code are 
accurate and efficient. The authors are currently investigating the effect of rock anisotropy, 
irregular topography, and underground openings on the 3D in-situ stresses. The outcome of such 
an analysis could have application in some of the air force projects, in particular, in the 
penetration mechanics related project. 
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10. Appendix A:   Radon Transform and plane representation of the Dirac 
delta function 

The Radon Transform ([14]-[19]) is of fundamental importance in order to work out the 
analytic solution of the problem at hand. 

Let/x) be a function defined in R3 and s a real number; the Radon transform of/x) is 
defined as: 

f(s,n) = R[f(x)]= \f(x)-S{s-n-x)dx (A.l) 

where 50 is the one-dimensional Dirac delta function. 
It follows that, when s varies over the real line, the Radon transform is an integration of 

fix) over all planes defined by n • x = s, i.e. having normal n and distant s/l n I from the origin O. 
The inverse Radon transform is an integration in the n-space over the closed surface Q 

containing the origin, defined as : 

f{x)=R * (/")= --L j/"(n • x,n>/Q(n) (A.2) 

where 

/"(n-x,n)=    J\' ' 
ds2 (A.3) 

Let S(x) = S(xl,x2,x3) be the Dirac delta centered in the origin, i.e. the functional: 

ls(x)f(x)dV = f(o) (A4) 

where o=(0,0,0). 
We will use the same symbol 8 for both one-dimensional and three-dimensional Dirac delta, with 
the convention that if the argument is a scalar, the one-dimensional Dirac delta is involved and if 
the argument is a vector, the three-dimensional Dirac delta is involved. 
The Radon transform of the Dirac delta is : 

S(s,n) = R[s(x)]= jS(x)-S{s-nx)dx = S(s-no) = S{s) 

Now: 

&?(n-x)_    dS 

etc, 
= »,-• 

ds 
. a2<?(n-x)      2d

2S 

dx,2        "' d2s 

Thus: 

,-=i     oxt i=l ds2 

d2S 

ds2 
2  i..i2«f«y ZV=H 

p=n-x'-' 
ds2 

Since the first member of (A.7) is Laplacian of 5, AS, Eq. (A.3) becomes: 

<?"= d2S 

ds2 

_A^(nx) 

n 

(A.5) 

(A.6.a,b) 

(A7) 

(A.8) 
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According to (A.2) the inverse Radon transform is : 

^)=-^rJ^^n(n)=-^Aj^n(n) (A.9) 

the last passage is due to the fact that the variable of integration is n, not x. 
Thus, we have the very notable relation, called "plane representation for <5(x)": 

*M-      '   AJ*k5koM (A.10) 
öfl-     ^   |n| 

that coincides with Eq. (6) in Wang [3]. 

11. Appendix B: Change of coordinate system 
The Radon transform is an integration over the planes whose normal is n. The inverse 

Radon transform, for a fixed x, is an integration involving all the normal vectors n. Therefore, a 
convenient coordinate system when we perform the inverse transform is such that an axis is 
parallel to x [3] (see Figure l.a). Let us define: 

r = |x|;     e = - (B.l) 
r 

If v is an arbitrary unit vector different from e (v*e), two normal vectors orthogonal to e 
are: 

exv 
P = i r (B.2) exv v     y 

q = exp (B.3) 

Let £, £, r\ be the components of vector n in the new coordinate system of R3, then: 

n = fr + Cq + ?je (B.4a) 

n-x = p-x£ + q-x^ + e-x;7 = r/7 (B.4b) 

This transformation induces a transformation of coordinates in the n-space with (£, £, r|) 
being the coordinates of point n in the new coordinate system in n-space, see Figure l.b. The 
determinant of the Jacobian of the latter transformation is obviously equal to 1. 

12. Appendix C: coefficients byk 
If v=(l,0,0) then: 

b(l,   1,   1)   =   (yf**2*cd(5,5)   - 2*yf*zf*cd(5,6)   + zf**2*cd(6,6))/ 
-(yf**2  +  zf**2) 

C 
b(l,   1,   2)   = 2*(yf**3*cd(l,5)   + yf*zf**2*cd(l,5)-yf**2*zf*cd(l,6)- 

-zf**3*cd(l,6)   - xf*yf*zf*cd(5,5)   - xf*yf**2*cd(5,6)   + 
-xf*zf**2*cd(5,6)   + xf*yf*zf*cd(6,6))/ 
-((yf**2  +  zf**2)*Sqrt(xf**2  + yf**2  +  zf**2)) 

C 
b(l,   1,   3)   =   (yf**4*cd(l,l)   +2*yf**2*zf**2*cd(l,1)+zf**4*cd(l,1)- 

-2*xf*yf**2*zf*cd(1,5)-2*xf*zf**3*cd(1,5)-2*xf*yf**3*cd(1,6)- 
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-2*xf*yf*zf**2*cd(l,6)   + xf**2*zf**2*cd(5,5)+2*xf**2*yf*zf*cd(5,6)+ 
-xf**2*yf**2*cd(6,6))/((yf**2  +  zf**2) *'(xf**2  + yf**2  +  zf**2)) 

b(l,   2,   1)   =   (-(yf*zf*cd(2,5))   +  zf**2*cd(2,6)   + yf**2*cd(4,5)   - 
-yf*zf*cd(4,6))/(yf**2  +  zf**2) 

b(l,   2,   2)   =   (-(yf**2*zf*cd(l,2))   -  zf**3*cd(l,2)   + yf**3*cd(l,4)+ 
-yf*zf**2*cd(l,4)   - xf*yf**2*cd(2,5)   + xf*zf**2*cd(2,5)   + 
-2*xf*yf*zf*cd(2,6)   -  2*xf*yf*zf*cd(4,5)   - xf*yf**2*cd(4,6)   + 
-xf*zf**2*cd(4,6)   +  yf**3*cd(5,6)   + yf*zf**2*cd(5,6)- 
-yf**2*zf*cd(6,6)   -  zf**3*cd(6,6))/ 
-((yf**2  +  zf**2)*Sqrt(xf**2  + yf**2  +  zf**2)) 

b(l,   2,   3)   =   (-(xf*yf**3*cd(l,2))   - xf*yf*zf**2*cd(l,2)   - 
-xf*yf**2*zf*cd(l,4)   - xf*zf**3*cd(l,4)   + yf**4*cd(l,6)   + 
-2*yf**2*zf**2*cd(l,6)   +  zf**4*cd(l,6)   + xf**2*yf*zf*cd(2,5)   + 
-xf**2*yf**2*cd(2,6)   + xf**2*zf**2*cd(4,5)   £ xf**2*yf*zf*cd(4, 6)   - 
-xf*yf**2*zf*cd(5,6)   - xf*zf**3*cd(5,6)   -  xf*yf**3*cd(6,6)   - 
-xf*yf*zf**2*cd(6,6))/((yf**2  + zf**2)*(xf**2  + yf**2  +  zf**2)) 

b(l,   3,   1)   =   (yf**2*cd(3,5)   - yf*zf*cd(3,6) 
-zf**2*cd(4,6))/(yf**2  +  zf**2) 

yf*zf*cd(4,5)   + 

b(l,   3,   2)   =   (yf**3*cd(l,3)   + yf*zf**2*cd(l,3)   - yf**2*zf*cd(l,4)- 
-zf**3*cd(l,4)   - 2*xf*yf*zf*cd(3,5)   - xf*yf**2*cd(3,6)   + 
-xf*zf**2*cd(3,6)   - xf*yf**2*cd(4,5)   + xf*zf**2*cd(4,5)   + 
-2*xf*yf*zf*cd(4,6)   + yf**3*cd(5,5)   + yf*zf**2*cd(5,5)   - 
-yf**2*zf*cd(5,6)   -  zf**3*cd(5,6))/ 
-((yf**2 +  zf**2)*Sqrt(xf**2  + yf**2  +  zf**2)) 

b(l,   3,   3)   =   (-(xf*yf**2*zf*cd(l,3))   - xf*zf**3*cd(l,3)- 
-xf*yf**3*cd(l,4)   - 
-xf*yf*zf**2*cd(l,4)   + yf**4*cd(l,5)   + 2*yf**2*zf**2*cd(l, 5)   + 
-zf**4*cd(l,5)   + xf**2*zf**2*cd(3,5)   + xf**2*yf*zf*cd(3,6)   + 
-xf**2*yf*zf*cd(4,5)   + xf**2*yf**2*cd(4, 6)   - xf*yf**2*zf*cd(5,5)   - 
-xf*zf**3*cd(5,5)   - xf*yf**3*cd(5,6)   - xf*yf*zf**2*cd(5,6))/ 
-((yf**2  +  zf**2)*(xf**2  + yf**2  +  zf**2)) 

b(2, 1, 1) = b(l, 2, 1) 
b(2, 1, 2) = b(l, 2, 2) 
b(2,   1,   3)   = b(l,   2,   3) 

b(2,   2,   1)   =   (zf**2*cd(2,2) 
-(yf**2  +  zf**2) 

2*yf*zf*cd(2,4)   + yf**2*cd(4,4))/ 

b(2,   2,   2)   = 2*(xf*yf*zf*cd(2,2)   - xf*yf**2*cd(2,4)   + 
-xf*zf**2*cd(2,4)   - 

-yf**2*zf*cd(2,6)   -  zf**3*cd(2, 6)   -xf*yf*zf*cd(4,4)   +yf**3*cd(4,6) + 
-yf*zf**2*cd(4,6))/((yf**2  + zf**2)*Sqrt(xf**2  + yf**2  + zf**2)) 

b(2,   2,   3)   =   (xf**2*yf**2*cd(2,2)   + 2*xf**2*yf*zf*cd(2,4)   - 
-2*xf*yf**3*cd(2,6)   -  2*xf*yf*zf**2*cd(2,6)   + xf**2*zf**2*cd(4,4)   - 
-2*xf*yf**2*zf*cd(4,6)   -  2*xf*zf**3*cd(4,6)   + yf**4*cd(6,6)   + 
-2*yf**2*zf**2*cd(6,6)   + zf**4*cd(6,6))/ 
-((yf**2  + zf**2)*(xf**2 + yf**2 + zf**2)) 

b(2,   3,   1)   =   (-(yf*zf*cd(2,3))   +  zf**2*cd(2,4)   + yf**2*cd(3,4)   - 
-yf*zf*cd(4,4))/(yf**2  +  zf**2) 

b(2,   3,   2)   =   (-(xf*yf**2*cd(2,3))   + xf*zf**2*cd(2,3)   + 
-2*xf*yf*zf*cd(2,4)   - 

-yf**2*zf*cd(2,5)   -  zf**3*cd(2,5)-2*xf*yf*zf*cd(3,4)+yf**3*cd(3,6)+ 
-yf*zf**2*cd(3,6)   - xf*yf**2*cd(4,4)   + xf*zf**2*cd(4,4)   + 
-yf**3*cd(4,5)   + yf*zf**2*cd(4,5)   -yf**2*zf*cd(4,6)-zf**3*cd(4,6))/ 
-((yf**2  +  zf**2)*Sqrt(xf**2  + yf**2  +  zf**2)) 

b(2,   3,   3)   =   (xf**2*yf*zf*cd(2,3)   + xf**2*yf**2*cd(2,4)   - 
-xf*yf**3*cd(2,5)   - 

-xf*yf*zf**2*cd(2,5)   + xf**2*zf**2*cd(3,4)   - xf*yf**2*zf*cd(3, 6)   - 
-xf*zf**3*cd(3,6)   + xf**2*yf*zf*cd(4,4)   - xf*yf**2*zf*cd(4,5)   - 
-xf*zf**3*cd(4,5)   - xf*yf**3*cd(4,6)   - xf*yf*zf**2*cd(4,6)   + 
-yf**4*cd(5,6)   + 2*yf**2*zf**2*cd(5,6)   +  zf**4*cd(5,6))/ 
-{(yf**2'+  zf**2)*(xf**2  + yf**2  +  zf**2) ) 

b(3, 1, 1) = b(l, 3, 1) 
b(3, 1, 2) = b(l, 3, 2) 
b(3, 1, 3) = b(l, 3, 3) 
b(3, 2, 1) = b(2, 3, 1) 
b(3, 2, 2) = b(2, 3, 2) 
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b(3,   2,   3)   ■= b(2,   3,   3) 

b(3,   3,   1)   =   (yf**2*cd(3,3)   -  2*yf*zf*cd(3,4)   +  zf**2*cd(4,4))/ 
-(yf**2  +  zf**2) 

b(3,   3,   2)   =  2*(-(xf*yf*zf*cd(3,3) )   - xf*yf**2*cd(3,4)   + 
-xf*zf**2*cd(3,4)   + 

-yf**3*cd(3,5)   +  yf*zf**2*cd(3,5)   + xf*yf*zf*cd(4,4)   - 
-yf**2*zf*cd(4,5)   -  zf**3*cd(4,5))/ 
-((yf**2  +  zf**2)*Sqrt(xf**2  + yf**2  +  zf**2)) 

b(3,   3,   3)   =   (xf**2*zf**2*cd(3,3)   + 2*xf**2*yf*zf*cd(3,4)   - 
-2*xf*yf**2*zf*cd(3,5)   -  2*xf*zf**3*cd(3,5)   + xf**2*yf**2*cd(4,4) 
-2*xf*yf**3*cd(4,5)   -  2*xf*yf*zf**2*cd(4,5)   + yf**4*cd(5,5)   + 
_2*yf**2*zf**2*cd(5,5)   +  zf**4*cd(5,5))/ 
-((yf**2  +  zf**2)*(xf**2  + yf**2  +  zf**2)) 

13. Appendix D: coefficients a; 
a (l)=-(b (1,3,1 )*b (2,2,1) *b(3,1,1))+ 

-2*b (1,2,1) *b (2,3,1) *b (3,1,1) - 
-b (1,1,1) *b (2,3,1) *b (3,2,1)- 
-b(l,2,l)*b(2,l,l)*b(3,3,l) + 
-b(l,l,l)*b(2,2,l)*b(3,3,l); 

C 
a(2)=-(b(l,3,2)*b(2,2,l)*b(3,l,l) + 

-b(l,3,l)*b(2,2,2)*b(3,l,l) + 
-b(l,3,l)*b(2,2,l)*b(3,l,2)) + 
-2*(b(l,2,2)*b(2,3,l)*b(3,l,l) + 
-b (1,2,1) *b (2,3,2) *b(3,1,1)+ 
-b (1,2,1) *b (2,3,1) *b (3,1,2) )- 
- (b (1,1,2) *b(2,3,1) *b (3,2,1)+ 
-b (1,1,1) *b (2,3,2) *b (3,2,1)+ 
-b (1,1,1) *b(2,3,1) *b (3,2,2))- 
-(b(l,2,2)*b(2,l,l)*b(3,3,l) + 
-b (1,2,1) *b (2,1,2) *b (3,3,1)+ 
-b(1,2,1) *b(2,1,1) *b (3,3,2))+ 
-(b(l,l,2)*b(2,2,l)*b(3,3,l) + 
-b(l,l,l)*b(2,2,2)*b(3,3,l) + 
-b (1,1,1) *b (2,2,1) *b (3,3,2) ); 

c 
a(3)=-(b(l,3,3)*b(2,2,l)*b(3,l,l) + 

-b(l,3,l)*b(2,2,3)*b(3,l,l) + 
-b(l,3,l)*b(2,2,l)*b(3,l,3) + 
-b(l,3,2)*b(2,2,2)*b(3,l,l) + 
-b (1,3,1) *b (2,2,2) *b (3,1,2)+ 
-b(l,3,2)*b(2,2,l)*b(3,l,2)) + 
-2* (b (1,2,3) *b (2,3,1) *b (3,1,1)+ 
-b (1,2,1 )*b (2,3,3) *b (3,1,1)+ 
-b(l,2,l)*b(2,3,l)*b(3,l,3) + 
-b(l,2,2)*b(2,3,2)*b(3,l,l) + 
-b(l,2,l)*b(2,3,2)*b(3,l,2) + 
-b (1,2,2) *b (2,3,1) *b (3,1,2))- 
-(b(l,l,3)*b(2,3,l)*b(3,2,l) + 
-b(l,l,l)*b(2,3,3)*b(3,2,l) + 
-b (1,1,1) *b (2,3,1) *b(3,2,3)+ 
-b(l,l,2)*b(2,3,2)*b(3,2,l) + 
-b (1,1,1) *b (2,3,2) *b (3,2,2)+ 
-b(1,1,2) *b(2,3,1) *b (3,2,2))- 
-(b(l,2,3)*b(2,l,l)*b(3,3,l) + 
-b (1,2,1) *b (2,1,3) *b(3,3,1)+ 
-b(l,2,l)*b(2,l,l)*b(3,3,3) + 
-b(1,2,2)*b(2,1,2)*b(3,3,1)+ 
-b(l,2,l)*b(2,l,2)*b(3,3,2) + 
-b(l,2,2)*b(2,l,l)*b(3,3,2)) + 
- (b (1,1,3) *b (2,2,1) *b (3,3,1)+ 
-b(1,1,1) *b(2,2,3) *b (3,3,1)+ 
-b(l,l,l)*b(2,2,l)*b(3,3,3) + 
-b (1,1,2) *b (2,2,2) *b(3,3,1) + 
-b(l,l,l)*b(2,2,2)*b(3,3,2) + 
-b(l,l,2)*b(2,2,l)*b(3,3,2)) 

a(4)=-(b(1,3,3)*b(2,2,2)*b(3,1,1)+ 
-b(l,3,2)*b(2,2,3)*b(3,l,l) + 
-b (1,3,1) *b(2,2,2) *b(3,1,3)+ 
-b(l,3,l)*b(2,2,3)*b(3,l,2) + 
-b(l,3,2)*b(2,2,l)*b(3,l,3) + 
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-b(l,3,3)*b(2,2,l)*b(3,l,2) + 
-b(l,3,2)*b(2,2,2)*b(3,X,2)) + 
-2*(b(l,2,3)*b(2,3,2)*b(3,l,l) + 
-b(l,2,2)*b(2,3,3)*b(3,l,l) + 
-b(l,2,l)*b(2,3,2)*b(3,l,3) + 
-b(l,2,l)*b(2,3,3)*b(3,l,2) + 
-b (1,2,2 )*b (2,3,1 )*b( 3,1,3) + 
-b(l,2,3)*b(2,3,l)*b(3,l,2) + 
-b(l,2,2)*b(2,3,2)*b(3,l,2))- 
- (b (1,1,3) *b (2,3,2)*b (3,2,1)+ 
-b (1,1,2) *b (2,3,3) *b (3,2,1) + 
-b (1,1,1) *b (2,3,2)*b (3,2,3)+ 
-b (1,1,1) *b (2,3,3) *b (3,2, 2) + 
-b(l,l,2)*b(2,3,l)*b(3,2,3) + 
-b(l,l,3)*b(2,3,l)*b(3,2,2) + 
-b(l,l,2)*b(2,3,2)*b(3,2,2))- 
- (b (1,2,3) *b (,2^1,2 )*b (3,3,1)+ 
-b(1,2,2)*b(2,1,3)*b(3,3,1)+ 
-b (1,2,1) *b (2,1,2) *b (3,3, 3) + 
-b(l,2,l)*b(2,l,3)*b(3,3,2) + 
-b(l,2,2)*b(2,l,l)*b(3,3,3) + 
-b(l,2,3)*b(2,l,l)*b(3,3,2) + 
-b(1,2,2) *b (2,1,2) *b (3,3,2))+ 
-(b(l,l,3)*b(2,2,2)*b(3,3,l) + 
-b(l,l,2)*b(2,2,3)*b(3,3,l) + 
-b(l,l,l)*b(2,2,2)*b(3,3,3) + 
-b(l,l,l)*b(2,2,3)*b(3,3,2) + 
-b(l,l,2)*b(2,2,l)*b(3,3,3) + 
-b(l,l,3)*b(2,2,l)*b(3,3,2) + 
-b(l,l,2)*b(2,2,2)*b(3,3,2)) 

a(5) —(b (1,3,2)*b(2,2,2) *b (3,1,3) + 
-b (1,3,3) *b (2,2,2)*b(3,1,2)+ 
-b(l,3,2)*b(2,2,3)*b(3,l,2) + 
-b(l,3,l)*b(2,2,3)*b(3,l,3) + 
-b(l,3,3)*b(2,2,l)*b(3,l,3) + 
-b(l,3,3)*b(2,2,3)*b(3,l,l)) + 
-2*(b(l,2,2)*b(2,3,2)*b(3,l,3) + 
-b(l,2,3)*b(2,3,2)*b(3,l,2) + 
-b(l,2,2)*b(2,3,3)*b(3,l,2) + 
-b(l,2,l)*b(2,3,3)*b(3,l,3) + 
-b(l,2,3)*b(2,3,l)*b(3,l,3) + 
-b (1,2,3) *b (2,3,3) *b (3,1,1) )- 
-(b(l,l,2)*b(2,3,2)*b(3,2,3) + 
-b(l,l,3)*b(2,3,2)*b(3,2,2) + 
-b(l,l,2)*b(2,3,3)*b(3,2,2) + 
-b(l,l,l)*b(2,3,3)*b(3,2,3) + 
-b(l,l,3)*b(2,3,l)*b(3,2,3) + 
-b (1,1,3) *b (2,3,3) *b (3,2,1))- 
-(b(l,2,2)*b(2,l,2)*b(3,3,3) + 
-b(l,2,3)*b(2,l,2)*b(3,3,2) + 
-b(l,2,2)*b(2,l,3)*b(3,3,2) + 
-b(l,2,l)*b(2,l,3)*b(3,3,3) + 
-b(l,2,3)*b(2,l,l)*b(3,3,3) + 
-b(l,2,3)*b(2,l,3)*b(3,3,l)) + 
-(b(l,l,2)*b(2,2,2)*b(3,3,3) + 
-b(l,l,3)*b(2,2,2)*b(3,3,2) + 
-b(l,l,2)*b(2,2,3)*b(3,3,2) + 
-b(l,l,l)*b(2,2,3)*b(3,3,3) + 
-b(l,l,3)*b(2,2,l)*b(3,3,3) + 
-b(l,l,3)*b(2,2,3)*b(3,3,l)) 

a(6)=-(b(l,3,2)*b(2,2,3)*b(3,l,3) + 
-b(l,3,3)*b(2,2,2)*b(3,l,3) + 
-b(l,3,3)*b(2,2,3)*b(3,l,2)) + 
-2*(b(l,2,2)*b(2,3,3)*b(3,l,3) + 
-b(l,2,3)*b(2,3,2)*b(3,l,3) + 
-b(1,2,3)*b(2,3,3)*b(3,1,2))- 
-(b(l,l,2)*b(2,3,3)*b(3,2,3) + 
-b(l,l,3)*b(2,3,2)*b(3,2,3) + 
-b(1,1,3) *b(2,3,3) *b(3,2,2) )- 
-(b(l,2,2)*b(2,l,3)*b(3,3,3) + 
-b(l,2,3)*b(2,l,2)*b(3,3,3) + 
-b(1,2,3)*b(2,1,3)*b(3,3,2))+ 
-(b(l,l,2)*b(2,2,3)*b(3,3,3) + 
-b(l,l,3)*b(2,2,2)*b(3,3,3) + 
-b(l,l,3)*b(2,2,3)*b(3,3,2)) 

a(7)=-(b(l,3,3)*b(2,2,3)*b(3,l,3)) + 
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-2*b (1,2,3) *b (2,3,3) *b (3,1,3)- 
-b(l,l,3)*b(2,3,3)*b(3,2,3)- 
-b(l,2,3)*b(2,l,3)*b(3,3,3) + 
-b(l,l,3)*b(2,2,3)*b(3,3,3) 

21 



Figure captions: 

Fig. l.a. Anisotropie elastic body (shown bounded for representation convenience) referred to a 
fixed Cartesian system. 

Fig. l.b. Closed surface Q containing the origin in the n-space. 

Fig. 2. Parallelepiped over which contour integration is taken in the n-space; Surfaces Si and S2 
are bounded by t,=±l, S3 and S4 by £=±L, S5 and S6 by r)=+L. 

Fig. 3. Cube having edge of length 1=1 m discretized with six nine-node quadrilateral elements 
with a total of 26 nodes. 

Fig. 4. Orientation of the plane of transverse isotropy. Dip angle y is the angle between the plane 
of symmetry and JC1X2 plane; dip direction angle cp is the angle between X2 and the orthogonal 
projection of the dip vector on the X1X2 plane. Positive angles are shown. 
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XI 

Fig. l.a. Anisotropie elastic body (shown bounded for representation convenience) referred to a 
fixed Cartesian system. Vectors p, q, and e are defined in Appendix B. 
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Fig. l.b. Closed surface Q containing the origin in the n-space. 
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of symmetry and xi*2 plane; dip direction angle 9 is the angle between x2 and the orthogonal 

projection of the dip vector on the X1X2 plane. Positive angles are shown. 
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Table 1. Correspondence between notation used in the text and notation used in the present 
 FORTRAN code.  
Notation used in the text    Notation used in the Fortran code 

3jjk b(ij,k) 
DU cd(i,j) 

x=(xi, x2, x3) xf„ yf, zf 
ai a(i) 

Table 2. Greenes displacements (m"4) calculated according to Pan's and Chou's closed-form 
solution [4] as implemented in [11] and with the present formulation. The source point is at the 
 origin, the field point is at x=(-l,0.8,1.5) m. ' 

(I,j) gij transversely 
isotropic 

formulation 
1,1 
1,2 
1,3 
2,1 
2,2 
2,3 
3,1 
3,2 
3,3 

gij present 
formulation 

relative difference 

4.0141588565E-03  4.0141588610E-03 
-2.9315529284E-04  -2.9315529143E-04 
-2.1517885087E-03 -2.1517885172E-03 
-2.9315529284E-04  -2.9315529143E-04 
3.8822389747E-03  3.8822389799E-03 
1.7214308070E-03  1.7214308137E-03 

-2.1517885087E-03 -2.1517885172E-03 
1.7214308070E-03  1.7214308137E-03 
1.9003220124E-02   1.9003220284E-02 

1.1E-09 
4.8E-09 
3.9E-09 
4.8E-09 
1.3E-09 
3.9E-09 
3.9E-09 
3.9E-09 
8.4E-09 

29 



Table 3. Green's stresses (kN/m2) calculated according to Pan's and Chou's closed-form 
solution [4] as implemented in [11] and the present formulation. The source point is at the origin, 

the field point in x=(-l,0.8,1.5) m. 

ijk Gijk transversely 
isotropic 

formulation 

Gijk present 
formulation 

relative 
difference 

ill 3.0534645334E-03 3.0534575287E-03 2.3E-06 
221 5.5516532436E-03 5.5516460542E-03 1.3E-06 
331 6.9594542712E-03 6.9594505349E-03 5.4E-07 
231":" 2.5160305656E-0ß 2.5160307422E-03 7.0E-08 
131 -3.3933330101E-03 -3.3933332396E-03 6.8E-08 
121 -1.8033628216E-03 -1.8033626725E-03 8.3E-08 
111 -5.6717491681E-03 -5.6717487868E-03 6.7E-08 
221 -1.2123450534E-03 -1.2123450967E-03 3.6E-08 
331 -5.5675634169E-03 -5.5675634915E-03 1.3E-08 
231 -2.2611192556E-03 -2.2611192104E-03 2.0E-08 
131 2.5160305656E-03 2.5160306251E-03 2.4E-08 
121 7.1617031049E-04 7.1617003567E-04 3.8E-07 
111 -1.7147827999E-02 -1.7147807646E-02 1.2E-06 
221 -8.3655438558E-03 -8.3655210747E-03 2.7E-06 
331 -2.2078536037E-02 -2.2078524002E-02 5.4E-07 
231 -1.1775219220E-02 -1.1775219467E-02 2.1E-08 
131 1.4719024025E-02 1.4719024871E-02 5.7E-08 
121 1.9516186984E-02 1.9516189072E-02 1.1E-07 
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Table 4. Derivatives of the Green's stresses (kN/m3) calculated according to Pan's and Chou's 
closed-form solution [4] as implemented in [11] and the present formulation. The source point is 
 at the origin, the field point in x=(-1,0.8,1.5) m.  

Ijk,l cfijk,i transversely 
isotropic 

formulation 

tfijM present 
formulation 

relative 
difference 

111,1 -0.59622259271E-02 -0.59629572705E-02 1.2E-04 
111,2 -0.45086940696E-02 -0.45074656599E-02 -2.7E-04 
111,3 -0.56414664921E-02 -0.56411267186E-02 -6.0E-05 
221,1 0.44694421882E-02 0.44685063303E-02 -2.0E-04 
221,2 -0.11811731607E-02 -0.11798500052E-02 -1.1E-03 
221,3 <* -0.37926171802E-fi2 -0.37921063932E-02 -1.3E-04 
331,1 0.16987884233E-02 0.16982433466E-02 -3.2E-04 
331,2 -0.69265941556E-02 -0.69258768984E-02 -1.0E-04 
331,3 -0.44525631963E-02 -0.44523121121E-02 -5.6E-05 
231,1 0.79385810234E-03 0.79379727638E-03 -7.7E-05 
231,2 0.49712727263E-03 0.49714271358E-03 3.1E-05 
231,3 -0.30906032310E-02 -0.30906216080E-02 5.9E-06 
131,1 0.39554359236E-02 0.39554842055E-02 1.2E-05 
131,2 0.18677123922E-02 0.18676962357E-02 -8.6E-06 
131,3 0.61652880201E-02 0.61653303015E-02 6.8E-06 
121,1 0.42717763920E-02 0.42718112393E-02 8.1E-06 
121,2 -0.20306209291E-03 -0.20300240322E-03 -2.9E-04 
121,3 0.53606344730E-02 0.53607252836E-02 1.7E-05 
112,1 -0.30768883497E-02 -0.30775369921E-02 2.1E-04 
112,2 0.84038676742E-03 0.84094663232E-03 6.7E-04 
112,3 0.50628670483E-02 0.50629208004E-02 1.6E-05 
222,1 -0.26129788805E-02 -0.26137365442E-02 2.9E-04 
222,2 -0.48936107600E-02 -0.48931499059E-02 -9.4E-05 
222,3 0.24843998895E-02 0.24845314971E-02 5.3E-05 
332,1 -0.69265941556E-02 -0.69269468094E-02 5.9E-05 
332,2 -0.14181789466E-02 -0.14179740950E-02 -1.4E-04 
332,3 0.35620505570E-02 0.35621376993E-02 2.4E-05 
232,1 -0.84519058971E-03 -0.84518000388E-03 -1.2E-05 
232,2 -0.43559086593E-02 -0.43559177742E-02 2.9E-06 
232,3 0.47745165660E-02 0.47746037165E-02 1.8E-05 
132,1 0.79385810234E-03 0.79378559587E-03 -9.1E-05 
132,2 0.49712727263E-03 0.49718754586E-03 1.2E-04 
132,3 -0.30906032312E-02 -0.30906169537E-02 4.4E-06 
122,1 0.11909419404E-03 0.11905631360E-03 -3.2E-04 
122,2 0.61674915810E-02 0.61674862040E-02 -8.7E-07 
122,3 -O.41648264611E-02 -0.41648490465E-02 5.4E-06 
113,1 0.71134008460E-02 0.71131995957E-02 -2.8E-05 
113,2 0.33341653291E-01 0.33342792915E-01 3.4E-05 
113,3 0.98238228068E-02 0.98259170804E-02 2.1E-04 
223,1 -0.29318534460E-01 -0.29319149219E-01 3.0E-05 
223,2 -0.15577546399E-01 -0.15576273564E-01 -8.2E-05 
223,3 -0.83606419668E-04 -0.81186914690E-04 -2.9E-02 
333,1 -0.27302017639E-01 -0.27302079852E-01 2.3E-06 
333,2 0.21841614111E-01 0.21842236628E-01 2.8E-05 
333,3 -0.41215790310E-03 -0.41093285237E-03 -3.0E-03 
233,1 -0.14561076074E-01 -0.14560962479E-01 -7.8E-06 
233,2 -0.30701631651E-02 -0.30703156075E-02 5.0E-05 
233,3 0.76303285982E-02 0.76304202029E-02 1.2E-05 
133,1 0.34823210683E-02 0.34819436621E-02 -1.1E-04 
133,2 -0.14561076074E-01 -0.14560935326E-01 -9.7E-06 
131,3 -0.95379107477E-02 -0.95379106793E-02 -7.2E-09 
123,1 0.79472178014E-02 0.79465584372E-02 -8.3E-05 
123,2 0.24245099017E-02 0.24250012946E-02 2.3E-04 
123,3 -0.22016509392E-01 -0.22016463462E-01 -2.1E-06 
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Table 5. Block under uniform compression. Example 1 
surface displacements at node A (xlO •5m). 

Present Transv. isotropic 
form, fill 

Exact 
1121 

«i -0.5496 -0.5496 -0.5496 

"2 -0.7029 -0.7032 -0.7031 

«3 -1.0417 -1.0417 -1.0417 

Table 6.1. Block under uniform compression. Example 1: internal displacements along the 
vertical center line. 

z(m) w3 (xlO"5 m) 

Present Transv isotropic form. [11] Exact T121 
0.75 -0.5210 -0.5208 -0.5209 
0.625 -0.2604 -0.2604 -0.2604 
0.5 0.0000 0.0000 0.0000 

0.375 0.2604 0.2604 0.2604 
0.25 0.5208 0.5208 0.5208 

Table 6.2. Block under uniform compression. Example 1: 
 stresses along the vertical center line.  
z(m) an (kN/m2) 

 Present      Transv. isotropic form. [11]   Exact [12] 
0.75 0.0005 0.0011 0.0000 
0.625 0.0006 -0.0000 0.0000 
0.5 -0.0023 -0.0000 0.0000 

0.375 0.0096 -0.0000 0.0000 
0.25 0.0013 0.0014  ■ 0.0000 
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Table 6.3. Block under uniform compression. Example 1: 
 stresses along the vertical center line.  
z(m) G22 (kN/m2) 

 Present      Transv. isotropic form. [11]   Exact [12] 
0.75 -0.0060 -0.0040 0.0000 

0.625 -0.0021 -0.0000 0.0000 
0.5 -0.0007 0.0000 0.0000 

0.375 0.0084 -0.0000 0.0000 
0".25 -0.0045 *-0.0044 0.0000 

Table 6.4. Block under uniform compression. Example 1: 
stresses along the vertical center line. 

z(m) CT33 (kN/m2) 

Present Transv. isotropic Exact [12] 
form. [Ill 

0.75 -0 999 -1. 001 -1 000 
0.625 -0 992 -1. 000 -1 000 
0.5 -1 002 -1. 000 -1 000 

0.375 -1. 000 -1. 000 -1 000 
0.25 -1. 003 0. 988 -1 000 

Table 7. Zinc block under uniform compression. Example 2: 
boundary displacements at node A (xlO"7 m). 

Present Anisotropie 
formulation [131 

Exact 
1121 

«1 7.278 7.291 7.274 
«2 -7.277 -7.291 -7.274 
«3 -28.35 -28.42 -28.34 
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